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Abstract. The electronic structure and the optical properties associated with antisite defects
in cubic SiC have been computed by means of the LMTO (linear muffin-tin orbital)
method and the supercell approach. The orbital-dependent LDA +U potential (LDA ≡
local density approximation) used in the present work gives rise to an improved description both of
the electronic structure near the energy gap and of the optical functions. Attention has been mainly
focused on the effects caused by the local lattice relaxation around the defects. For compositions
that deviate from the stoichiometric SiC towards higher content of carbon atoms, the small reduction
of the energy gap which is observed experimentally can be explained only if the lattice relaxation
is taken into account. The local electronic structure of antisite defects is characterized by s- and
p-like resonance states in the valence band. Strong resonances occur also in the conduction band
(especially for CSi). The SiC (CSi) antisite has more (fewer) valence electrons localized in the
atomic sphere than theofficial Si (C) atom, but this difference is considerably reduced by the lattice
relaxation. The results of the calculations show how the presence of point defects modifies the
shape of the optical functions of the perfect SiC crystal and how the lattice relaxation has a strong
effect on the fine structure of the optical functions. Different kinds of defect lead to different shapes
of the optical functions.

1. Introduction

In the past few years a great deal of theoretical investigation has been devoted to the electronic
structure of the different phases and polytypes of SiC, because of its interesting properties and
the possibilities of its use in electronic devices [1–8]. However, in spite of recent advances
in crystal growth capability, there are small deviations from stoichiometry, and even small
deviations can give rise to significant concentrations of native defects, such as vacancies,
antisites and self-interstitial defects. These defects can, in turn, affect the behaviour and the
efficiency of the material in electronics applications.

The electronic properties of cubic (zinc-blende)β-SiC containing different kinds of
native defect have recently been studied theoretically by means of different methods of
calculation [9–11]. In all of these calculations no lattice relaxation around the defects has
been allowed for and neutral defects have been considered.

In this work we present the results of a theoretical study of the electronic structure and of
the optical properties of theβ-SiC polytype containing the SiC antisite (where a Si atom has
been substituted for a C atom), the CSi antisite (where a C atom has been substituted for a Si
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atom) and a pair of point defects where the antisites of different kinds are first neighbours to
each other. The results of the theoretical estimation [12] show that antisite defects (especially
CSi) have lower formation energies than other kinds of point defect in SiC. On the other hand,
the presence of antisite defects gives rise to a significant lattice distortion: relative changes in
the interatomic distances around the defect can be as large as 8–12% [12]. Thus, we have paid
special attention to the effects of the lattice relaxation on the energy distribution of the valence
electron states, on the electronic charge on the atoms, on the character of chemical bonding
and, consequently, on the optical properties of the crystal.

As in [8], the calculations have been performed using the LMTO method. In order to
describe the crystal structure containing defects we have used a supercell approach. Within
this approach it has been possible to take into account the lattice relaxation around defects in
the most simple and natural way.

The paper is organized as follows. In section 2 we describe the structure of the supercell
and the computational details. In section 3 the results of the electronic structure calculations
are discussed. The calculated optical functions for the non-perfectβ-SiC crystal are presented
in section 4. Conclusions are drawn in section 5.

2. The structure model and computational details

2.1. The choice of supercell

The atomic structure ofβ-SiC can be understood if one considers a stacking sequence of
hexagonal bilayers, consisting of pairs of Si and C layers with tetrahedral bonds between
atoms. Successive bilayers are displaced sideways, so atoms in each bilayer are characterized
by one of the possible positions A(0, 0, z1), B (1/3, 2/3, z2) and C(2/3, 1/3, z3). The vertical
sequence of bilayers in the cubicβ-SiC polytype is ABCABC. . .. The supercell that we have
considered in our model contains eighteen atoms (nine Si atoms and nine C atoms in the case of
the perfect crystal). It contains three bilayers with six atoms each (three atoms in each layer),
characteristic of the cubic structure. If a point defect (or a pair of the neighbouring point
defects) is created in this supercell, other defect sites can be found as far as fourth neighbours.
It has been shown in our preliminary consideration [13] that the perturbation of the electron
density caused by defects is already weak for the second neighbour. Thus, we assume that the
interaction of point defects located in different supercells can be considered negligible.

2.2. The method of calculations

As in [8], the energy band structure has been calculated by means of the self-consistent
LMTO method in the atomic-sphere approximation and including combined corrections (ASA
+ CC). A detailed description of the method can be found in [14] and [15]. In order to
obtain a close-packed structure, empty spheres have been introduced in the interstitial regions,
with the result that the total number of spheres in the supercell was 36. The calculations
have been performed within the scalar-relativistic formalism for the valence states, whereas
full relativistic solutions have been used for the core levels. The exchange and correlation
effects have been taken into account by using the local density approximation (LDA) and the
von Barth–Hedin parametrization for the exchange–correlation potential [16]. The angular
momentum expansion of the basis functions has been performed up tol = 2 for all of the
spheres. The electron density of states (DOS) has been computed by using the Brillouin zone
integration method described in [17]. Calculations have been performed for 238 irreduciblek-
points of the Bl̈ochl mesh (4109 tetrahedra have been used for the Brillouin zone integration).



Antisite defects inβ-SiC 2267

The calculated results were considered self-consistent if the largest charge-density variation
was less than 10−5 atomic units with respect to the preceding iteration. As discussed in [8],
taking into account the combined corrections produces results which show a very weak
dependence on the choice of the atomic radii. We have used for the atomic sphere radii
the following values: 2.2357 au for Si atoms, 1.9207 au for C atoms, 1.8054 au for empty
spheres surrounded by ‘large’ Si atoms and 2.1016 au for empty spheres surrounded by ‘small’
C atoms. According to the atomic sphere approximation, the sum of the volumes of all of the
spheres in the cell should be equal to the volume of the supercell, and therefore in the case
of the presence of antisite defects this sum has been corrected by varying the radii of empty
spheres surrounding the defect.

The imaginary partε2(ω) of the dielectric function has been calculated within the one-
electron self-consistent-field approach [18] using the momentum transition-matrix elements.
The interband contribution to the real part of the dielectric functionε1(ω) has been obtained
by Kramers–Kronig analysis. The results presented have been averaged over the light
polarizations and 200 energy bands have been used in the calculations. Use of a limited
number of bands leads to underestimated values ofε2 for h̄ω > 46 eV. Thus we can estimate
that the Kramers–Kronig analysis is valid at least up to 25 eV. The calculated optical functions
have been convoluted with a Gaussian of 0.05 eV FWHM to account for the finite experimental
resolution.

2.3. The LDA +U approach

Because of the well-known underestimation of the band gap by calculation methods using
LDA, a comparison of calculated results with experimental data requires the consideration of
the self-energy effects on single-particle excitations. To solve this problem one should take into
account quasiparticle corrections which have, in general, non-local character [19]. In order
to retain the local character of the potential in the theoretical model used and to avoid more
complicated calculations, some authors included these corrections in the simplest manner,
namely as a constant energy shift of the calculated spectra [3,8]. However, in the present work
we have chosen to overcome the deficiency of the LDA by means of the so-called LDA +U

method [20]. In this approach the non-local and energy-dependent self-energy is approximated
by a frequency-independent but non-local screened Coulomb potential. With this orbital-
dependent LDA +U potential the orbital polarization becomes possible and the LDA failure
in describing the band gap can be removed. The LDA +U method was initially developed for
the theoretical description of the electronic structure in strongly correlated systems [21, 22]
and seems to be applied to the semiconductors for the first time in the present work. It has
been shown in [20] that the LDA +U theory may be regarded as an approximation to theGW -
theory [23, 24] which is widely used in different modifications in order to take into account
the quasiparticle effects in semiconductors [6, 25]. In principle, the LDA +U method could
be applied as anab initio approach where the parametersUl are estimated from the calculated
energies of the on-site excitations (using the Slater transition-state concept). However, in order
to reduce the computational effort, we have used a simplified approach. We have introduced
the additional potentialsUl only for the valence p states of carbon and silicon and we have
estimated the values of the potentialsUp(C) andUp(Si) by fitting the calculated values for
the fundamental energy gap to the experimental ones [26] for the diamond and for the silicon
crystals, respectively. We have obtainedUp(C) = 3.78 eV andUp(Si) = 2.18 eV. Then we
performed the LDA +U calculations of the electronic structure in the perfectβ-SiC crystal
using these values for C and Si atoms. The calculations gave a value of the indirect energy gap
equal to 2.395 eV, in excellent agreement with experiment (2.39 eV [26] or 2.417 eV [27]).
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It should be noted that this gap value has been obtained without any additional fitting of the
U -parameters. The agreement achieved with the experimental data could be considered as
evidence that in SiC crystals the electron states are localized enough to be accurately described
within the LDA + U approach. The LDA +U approach has also improved the calculated
results for optical properties. It can be seen in figure 1 that the low-energy shifts of most of
the features in the optical functions, which take place in the LDA, are eliminated in the LDA
+ U method. Thus, in the following calculations for defect-containing SiC crystals the LDA
+ U method with two parametersUp(C) andUp(Si) has been used.

Figure 1. The reflectivity functions for diamond, silicon andβ-SiC calculated using the LDA
(dashed curves) and LDA + U (solid curves) approaches. The experimental results (solid circles)
are from [28–30].

3. Local electronic structure around defects

3.1. Single antisite defects

The size differences between the carbon and silicon atoms give rise to the lattice relaxation
around antisite defects. The nearest-neighbour atoms are shifted inwards (for the CSi antisite)
or outwards (for the SiC antisite), and these atomic shifts maintain a Td symmetry around the
defect. According to the published results of pseudopotential [12, 31] and tight-binding [10]
calculations, the nearest-neighbour atoms around the SiC antisite relax by 12–14% of the
interatomic distance whereas in the case of the CSi antisite the calculated values for the changes
in the nearest-neighbour distances are quite different: 8% [12], 11% [31], almost 15% [10]. Our
estimation of the formation energies for the different kinds of point defect inβ-SiC provides
results which agree fairly well with values given in [12]. However, in the LMTO method
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used in the present work the small changes in the calculated total-energy value could be due to
changes in the overlapping of the atomic spheres or in the atomic sphere radii. These effects
interfere with the accurate estimation of atomic shifts caused by relaxation. Therefore we
discuss the effects which are already essential for a minimal degree of the atomic relaxation:
the 8% inwards shift around the CSi antisite and the 12% outwards shift around the SiC antisite.

Let us consider the effect of point defects on the value of the fundamental optical gap.
In the case of the SiC antisite, Si–C bonds are replaced by weaker Si–Si bonds. The electron
states related to these Si–Si bonds lie just at the band edges (at the top of the valence band
and at the bottom of the conduction band) and are responsible for the changes in the energy
gap. Thus, we could expect a decreasing of the gap mainly due to an increasing of the value
of the valence band top [32]. For the CSi antisite a similar qualitative consideration cannot
lead to any clear result because of the position of the electron states related to the strong C–C
bonds. In fact, these electron states lie within the bands and cannot determine the value of
the energy gap directly. They could play some role but only by means of interaction with the
Si–C bonds. Most theoretical models predict further increasing of the energy gap in the Si–C
compounds if the composition deviates from stoichiometric SiC towards a higher content of
carbon atoms (see [32]). This is however in contradiction with experimental results [33–35]
where the energy gap value tends to show a maximum for compositions close to that of the
stoichiometric SiC crystal.

Figure 2. The calculated values of the energy gap for the perfect SiC crystal and for crystals
containing antisite defects (the atomic composition of supercell is indicated) without (open circles)
and with lattice relaxation (solid circles).

Our calculated results are presented in figure 2. One SiC antisite per supercell causes
considerable decreasing of the energy gap. The lattice relaxation tends to lengthen Si–Si bonds,
and this leads to a further reduction of the energy distance between the pertinent bonding and
antibonding electron states. In the case of the non-relaxed lattice around the CSi antisite, our
calculations indicate a small increasing of the energy gap. Due to the lattice relaxation, the
C–C bonds become shorter but the inwards shift of the carbon atoms surrounding CSi tends to
stretch the bonds to the next Si atoms. This should reduce the energy gap, because in the case of
the CSi antisite the band edges are determined by the electron states related to the Si–C bonds.
Thus, the energy gap value is smaller than that for the perfect stoichiometric SiC crystal. It
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should be noted that further inwards shift of carbon atoms surrounding antisite defects (with
the tendency to create a diamond-like tetrahedral carbon cluster) leads to a further reduction of
the energy gap. For example, in the case of a 14% inwards relaxation, our calculations give an
energy gap of 1.97 eV. If we assume that antisite defects are the main kind of point defect for
compositions which deviate from that of the stoichiometric SiC compound [12], the calculated
dependence of the energy gap on the crystal composition agrees well with the results of the
experimental measurements.

In [32] the decreasing of the energy gap for increasing carbon content is explained as
being due to the advent of the C sp2 bonding and also the effect ofπ -bonded electron states.
This possibility could be realized in the case of the graphite-like clustering of carbon atoms by
the decreasing of the local symmetry around the CSi antisite from Td to C3v. In the SiC crystal
the vacancy–antisite complex is suitable for being organized in a graphite-like clustering, and
this situation will be discussed in our forthcoming work. Here we have shown however that
the energy gap decreases even in the case of the diamond-like tetrahedral clusters of C atoms,
if the lattice relaxation around CSi antisites is taken into account.

Figure 3. The calculated local densities of electron states for SiC sites and for nearest-neighbour
Si atoms without (a) and with the lattice relaxation taken into account (b).

In figures 3 and 4 the local DOS at Si and C sites are displayed. The vertical line in each
figure indicates the valence band maximum for the perfect crystal. It can be seen that, as in
earlier calculations [9–12], no defect-induced states exist in the gap. The SiC antisite presents a
p-like resonance state just below the valence band top and an s-like resonance state at−9.04 eV
which is shifted to the energy−8.46 eV after lattice relaxation. These results agree with those
in [11] where the calculations, performed by means of a tight-binding LMTO Green-function
method, show a p-like resonance below the valence band maximum and an s-like resonance at
−7.0 eV for the case of the SiC antisite. Some differences in the calculated energy positions
of resonances could be explained by the effect of the additional orbital-dependent potential
introduced in our work within the LDA +U approach. In the conduction band the weak defect-
induced resonance having p character could be found at +6.67 eV. Due to the lattice relaxation,
it is shifted towards the high-energy side, and the energy distribution of unoccupied electron
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Figure 4. The calculated local densities of electron states for CSi sites and for nearest-neighbour
C atoms without (a) and with the lattice relaxation taken into account (b).

states at the SiC antisite becomes very close to the local DOS at the sites of the non-perturbed
Si atoms. The p-like resonance is the most prominent feature in the local DOS of the SiC

antisite. These Si p states are responsible for displacement of the valence band top towards
higher energies and for reduction of the energy gap. They could also give rise to the split states
observed at 0.2–0.4 eV above the maximum of the valence band (so-called H centres) which
are discussed in [31] and interpreted as ionization states of SiC antisites.

In the case of the CSi antisite we have found a p-like resonant state at−4.62 eV and an s-
like resonant state at the bottom of the valence band. Both resonances have then been enhanced
by the lattice relaxation. We would not interpret the peak at the energy of−7.95 eV (in [11]
in this case an s-like resonance at−7.0 eV is reported) as a defect-induced state, because this
sharp peak is a characteristic feature in the DOS of the valence s electrons even in the case
of non-perturbed carbon atoms in the SiC crystal. The most prominent feature in the local
electronic structure of the CSi antisite is the high resonance in the conduction band at +4.62 eV.
These states substantially disturb the behaviour of the local DOS at the nearest-neighbour
C-atom sites. The lattice relaxation shifts these unoccupied C p states to +6.67 eV, and a small
shift of the occupied resonance states in the valence band towards lower energies can be also
found. Thus, in the relaxed lattice the energy distance between bonding and antibonding states
related to the C–C bonds increases. It should also be noted that, after the lattice relaxation is
taken into account, the shape of the local DOS in the conduction band at the nearest-neighbour
C-atom sites becomes close to that at the sites of the non-perturbed carbon atoms.

The valence electron charge localized in the atomic spheres is shown in figure 5 for the
antisite atoms and for their neighbours. The partial composition of the valence electron charge
for different cases is given in table 1. In the perfect SiC crystal the Si atomic sphere contains
fewer valence electrons than the C atomic sphere in spite of the large radius of the Si atomic
sphere. Therefore the Si–C bond could be considered as polarized, with a shifting of the
electron charge towards the carbon atom. It can be seen that at the SiC antisite there is a larger
amount of electron charge with respect to theofficial Si site and that also there is extra charge
on the nearest neighbours of the defect. This could be thought of as due to the fact that the
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Figure 5. The valence electronic charge in C and Si atomic spheres around single (circles) and
paired (squares) antisite defects: (0) the defect atom, (1) the nearest-neighbour atom, (2) the third
neighbour, (3) the atom in the perfect crystal. The calculated results for the non-relaxed lattice are
denoted with open symbols, those for relaxed lattice with solid symbols.

Table 1. Valence electron charges in the ASA spheres.

Single antisite Antisite pair
Valence Perfect
charge crystal Non-relaxed Relaxed Non-relaxed Relaxed

C (total) 3.987 3.272 3.413 3.418 3.717
s 1.161 1.114 1.076 1.127 1.075
p 2.785 2.084 2.212 2.217 2.492
d 0.041 0.074 0.125 0.074 0.150

Si (total) 2.588 3.483 3.095 3.266 2.751
s 0.860 1.059 1.011 1.036 0.930
p 1.394 2.230 1.945 2.005 1.620
d 0.334 0.194 0.139 0.225 0.201

silicon atoms hold an extra electron charge, which is usually shifted to neighbouring carbon
atoms in the case of theofficial Si site. The behaviour of the CSi antisite is the reverse of that
in the Si case. CSi loses electronic charge in comparison with theofficial C sites (or, in other
words, it could not withdraw electronic charge from neighbouring atoms due to the absence of
Si atoms around CSi). The changes in the charge of the nearest neighbours amount to about 0.2
electrons. Next, atoms of the same kind (third neighbours) show only negligible deviation of
the valence electron charge from theofficial value. The SiC antisite gains almost 0.9e whereas
the CSi antisite loses about 0.7e. When reduced by the lattice relaxation, these values amount
to 0.51e and 0.57e for SiC and CSi, respectively. It should be noted that the relaxation has no
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significant effect on the valence charge of the nearest-neighbour atoms, in spite of the actual
shift of these atoms in the relaxation process.

The changes in the valence electron charge at the antisite defects are caused essentially
by p electrons and, to some extent, also by s electrons. The valence d states show an opposite
behaviour: an increasing number of d electrons for the CSi antisite and a decreasing one for
the SiC antisite. This behaviour could reflect an increased localization of the electron states
along C–C bonds and a decreased one along Si–Si bonds, as compared to the Si–C bonds in the
perfect SiC crystal. The lattice relaxation leads to an increasing number of p and d electrons
if the interatomic distance is reduced. If the surrounding atoms are shifted outwards from the
defect, the number of p and d electrons in the antisite atomic sphere decreases. It should be
noted that for both CSi and SiC antisites the number of s electrons is reduced by the lattice
relaxation.

The values presented in table 1 show some deviations from those published in [8,13] due
to the improved method of calculations (the LDA +U approach) used in the present work.

3.2. Paired antisites

If two antisite defects are nearest neighbours of each other, the local tetrahedral symmetry
around antisites is broken. In this case the defect atom is surrounded by three atoms of the
same kind, the fourth neighbour being an atom of the other kind. Thus, we have to expect
relaxation shifts which are different to those in the case of single antisite defects. The local
symmetry around the antisite pair is decreased to C3v, and the interatomic interaction tends to
shift defect atoms along the CSi−SiC axis. In fact, the CSi antisite would be displaced closer
to the three neighbouring C atoms, in order to shorten C–C bonds, whereas the SiC antisite
seems to be shifted towards its CSi neighbour, in order to increase the Si–Si distance. Thus,
for the antisite pair one expects the defect atoms to be shifted because of the lattice relaxation,
while in the single-antisites case the nearest neighbours of the defects are displaced.

In our calculations we have used the following picture for the lattice relaxation. The
changes in the interatomic distances were chosen to be 12% for the Si–SiC bond and 8% for
the C–CSi bond, as in the case of single antisite defects. This choice requires only a small
inwards shift of the carbon-atom neighbours of CSi, the positions of the three silicon atoms
bonded to SiC being unchanged.

The calculated results for the antisite pair can be discussed in comparison with those
obtained for single antisite defects. The total-energy considerations, even with the usual
warnings as regards the errors that they could be affected by, because of the spherical
approximation for the potential used in the ASA, show that the formation energy of the non-
relaxed antisite pair is lower by 2.24 eV than the formation energy of two well-separated
antisites. This value agrees well with results presented in [12], where the energy is reduced by
2.5 eV if two antisites combine to create the CSi−SiC pair. However, it should be noted that, if
the lattice relaxation is taken into account, this gain in the energy is substantially reduced and
amounts only to 0.82 eV. This is the consequence of the lattice relaxation around the antisite
pair leading to a small decrease of the total energy in comparison with that for the case of
lattice relaxation around isolated antisites.

In the case of a non-relaxed antisite pair, the energy gap is equal to 1.54 eV and this value is
very close to the one obtained for the single SiC antisite. This means that the decreasing energy
gap is caused also by the electron states related to the Si–Si bonds. The lattice relaxation leads
to the value 1.03 eV, showing a stronger effect on the energy gap, due to the decreasing of the
local symmetry and to the energy splitting of degenerate electron states at the band edges.

If we compare the valence DOS presented in figure 6 with those shown in figures 3 and
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Figure 6. The calculated local densities of electron states for the antisite pair CSi−SiC without (a)
and with the lattice relaxation taken into account (b).

4, we can conclude that the main features of the case of single antisite defects are still present
for paired antisites: there are resonance states at−8.72 eV (s) and just below the valence band
top (p) for the SiC antisite as well as resonance states at the bottom of the valence band (s)
and at−5.51 eV (p) for the CSi antisite. All peaks are shifted towards lower energies with
respect to their positions obtained for single antisite defects. We should note also the splitting
of p resonances caused by the decreasing of the local symmetry. The SiC state at the top
of the valence band is split into three peaks. The low-energy peak is related to the SiC−CSi

bond and is reflected also in the local DOS of CSi at−0.59 eV. Two other peaks should be
ascribed mainly to Si–Si bonds. On the other hand, the SiC local DOS in the conduction band
is influenced by CSi electron states giving rise to peaks in the energy range between +4 and
+6 eV.

The valence electron charge localized in the atomic spheres (see figure 5) shows the same
behaviour as for isolated antisite defects, even if the deviations from the values corresponding
toofficialSi and C atoms are smaller. It should be noted that the lattice relaxation reduces these
deviations considerably: the changes in the charge on the defect atoms are only about 0.2–0.3
electrons, which is comparable with charge perturbations at neighbouring atoms. The partial
decomposition of the valence electron charge for paired antisites (shown in table 1) could be
explained in much the same way as for single antisite atoms. Note the significant increasing
of d components reflecting the reduced local symmetry around the SiC−CSi pair.

4. Optical properties

The changes in the energy band structure caused by point defects also affect the shape of the
optical functions. The optical properties of silicon carbide are determined mainly by p→ d
transitions. The functionε1(ω) shows its maximal values at about 6 eV and its minimal negative
values at about 10 eV. The maximum of the functionε2(ω) can be found at 7.5 eV. It can be
seen in figure 7 that the presence of antisite defects modifies the fine structure of the dielectric
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Figure 7. The real and imaginary parts of the dielectric function ofβ-SiC containing antisite
defects: SiC (a), CSi (b) and the antisite pair CSi−SiC (c) without (dashed curve) and with lattice
relaxation (solid curve).

function, and these modifications are different for various kinds of defect. The changes in the
shape ofε(ω) caused by lattice relaxation around point defects are comparable with differences
between curves related to crystals with different kinds of defect. The prominent feature in the
ε2(ω) function, caused by SiC antisites, is the low-energy structure at 3.3 eV, which reflects
transitions from the p-like resonance state at the top of the valence band. This structure can be
seen also in the case of paired antisites and it is absent for single CSi defects. Another effect
caused by presence of SiC sites on the shape of dielectric function (especiallyε2(ω)) is that
the lattice relaxation leads to small energy shifts of peaks towards the high-energy side. This
could be explained by the upwards shift of d states in the conduction band while the SiC−Si
distance increases. In the case of isolated CSi antisites the lattice relaxation gives rise only
to a variation of the peak intensities, and we can observe for the relaxed lattice an increasing
intensity of most of the peaks in the dielectric function. For SiC antisites as well as for paired
antisites no significant increasing of intensity is obtained when the lattice relaxation is taken
into account.

In figure 8 the real and imaginary parts of the dielectric function, as calculated both for the
perfectβ-SiC crystal and for the one containing the antisite defects, are shown and compared
with the experimental data [30], taken for high-quality commercial crystals. No energy shift
has been used in order to match theory and experiment. It can be seen that the computations for
the perfect crystal reproduce very well the positions of the high-energy features: the minimum
at 7.8 eV and the local maximum at 8.9 eV inε1(ω), as well as the minimum at 8.6 eV and the
local maximum at 9.2 eV inε2(ω). In contrast, the low-energy part of the calculated dielectric
function shows some deviations from the experimental results; for example, the main peak and
the low-energy shoulder inε2(ω) are shifted upwards in energy. The calculated real part of the
dielectric functionε1(ω) is characterized by the prominent peak at 7.2 eV, just before the abrupt
decreasing of the function. This narrow sharp peak occurs also in the calculations performed
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Figure 8. The real and imaginary parts of the dielectric function ofβ-SiC, as calculated for the
perfect crystal (dashed curve), for the crystal containing SiC antisite defects (solid curve) and
measured experimentally [30] (solid circles).

by other methods (see, for example, [19]). In order to compare the calculated results with the
experimental ones, the curves in figure 8 (as well as in figure 7) have been smoothed, but this
peak remains the maximum of the functionε1(ω). However, this peak is not observed in the
experiment, and the maximal value is reached at the energy of 5.75 eV. It is obvious that this
peak (close to the maximum of optical absorption) should be smeared more than other features
if the lifetime of electron states is reduced due to scattering processes. In fact, this peak does not
occur in the calculated dielectric functions for the crystals containing defects (see figure 7).
The curves corresponding to crystals with single SiC antisites have a shape which is closer
to the experimental ones than those calculated with other kinds of defect. These curves are
presented in figure 8 too. Apart from some energy shifts of the low-energy structures, the only
disagreement with the experimental results is the reduced intensity of the calculated functions.
This could be explained by the relatively high content of point defects in our model crystal
calculations (almost 6% of sites are defects). On the other hand, it might be supposed that
some minor defect concentrations in the specimens have affected the experimental data [30],
and apparently these defects could be SiC antisites.

5. Conclusions

In conclusion, by using anab initioLMTO approach, we have computed the electronic structure
of β-SiC containing antisite defects and the optical properties of both the perfect crystal and the
crystal containing antisite defects. The LDA +U approach used in the present work gives rise
to an improved description of both the electronic structure near the energy gap and the optical



Antisite defects inβ-SiC 2277

functions. The attention has been mainly focused on the effects of the lattice relaxation around
the defects on the electronic structure and optical properties of crystals. It has been shown
that inβ-SiC crystal the lattice relaxation leads usually to a decrease of the energy gap. For
compositions deviating from the stoichiometric SiC, towards higher content of carbon atoms,
the small reduction of the energy gap observed experimentally can be explained only if the
lattice relaxation is taken into account and it is caused by the increased distance between the
carbon atoms surrounding the CSi antisite and the Si atoms (second neighbours of the defect).

The local electronic structure of antisite defects is characterized by s- and p-like resonance
states in the valence band. Strong resonances occur also in the conduction band (especially
for CSi). The lattice relaxation modifies the energy distribution of unoccupied electron states,
making it closer to that of the perfect crystal. The SiC (CSi) antisite has more (fewer) valence
electrons localized in the atomic sphere than theofficial Si (C) atom, but this difference is
considerably reduced by the lattice relaxation. It follows from the total-energy considerations
that the creation of the antisite pair SiC−CSi is preferable to creation of isolated antisites, even
if, when the lattice relaxation is taken into account, the energy gain is very small.

The presence of point defects modifies the shape of the optical functions as compared to
the case for the perfect SiC crystal. For an accurate description of the optical properties of
crystals containing point defects, it is necessary to take into account the lattice relaxation, due
to its strong effect on the fine structure of the optical functions. Different kinds of defect lead
to different shapes of optical functions. This offers an interesting possibility of distinguishing
among different kinds of point defect by means of optical measurements. This problem requires
however further theoretical as well as experimental investigations. The only way to test this
hypothesis would be to increase the size of the supercell, in order to decrease the defect
concentration, and to investigate the convergency of the calculated results towards the case of
the perfect crystal. Unfortunately, this procedure is technically difficult because of the drastic
increase in the computational effort required.
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